semaphore提示您:看后求收藏(乡村小说网www.xcxs5200.com),接着再看更方便。

型的定义存在差异,因此 NER 模型的构建

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇。

特征,同时引入其他表征信息来提升模型性能,如中文分词(CWS)、语义部分标签(POS)等外部

信息,因此构建中文命名实体识别(CNER)模型更为复杂。目前,NER 任务的研究方法主要包括基

于词典和规则的方法、基于机器学习(ML)的方法以及基于深度学习(DL)的方法。

目前,联合实体和关系提取神经模型可分为参数共享和序列标注两种方式。然而,许多研究将

实体和关系的联合提取看作是序列标记问题。尽管如此,识别复杂的关系仍然是一个具有挑战性的

任务,需要进一步提高联合提取模型的性能。此外,大多数新兴的联合提取神经模型仅在英语基准

上进行了评估,其在其他语言或特定领域的有效性尚待验证。Google 机器翻译团队提出了一种包

括自注意力机制和多头注意力机制的 transformer 结构。相较于循环神经网络(RNN)或卷积神经

网络(CNN),多头注意力机制具有许多吸引人的优点。在中文命名实体识别任务中,数据集中存在

大量非结构化文本,因此需要从多个角度和多层次来提取文本本身的更多特征。近年来,多头注意

力机制在命名实体识别任务中得到了广泛应用。例如,Li 等人采用了基于自注意力机制的深度学

习模型,而 Yin 等人则提出了一种名为 ARCCNER 的模型,该模型利用 CNN 网络学习中文激进特征并

使用自我注意机制自动获取权重。尽管字符特征得到了增强,但激进级别的特征仍然难以获取,这

不仅耗费成本,而且模型性能提升有限,尚未解决 BiLSTM 网络中的信息遗忘问题。

而基于大模型的知识抽取,流程如图 2.1 所示,是指利用具有数千万甚至数亿参数的深度学习

模型来进行

科幻灵异推荐阅读 More+
震惊:我收的女弟子个个天赋异禀

震惊:我收的女弟子个个天赋异禀

冰心雨呀
星辰大陆,强者如云,风无痕本是一名普通人,却在各种奇遇中成长为强者,如今乃是星辰宗,最为年纪的荣誉长老,享受长老一切权力,却又不需要履行长老义务。 其门下共有五大弟子,每一个都是天资聪慧,修炼天赋无双。 风无痕每天看着五位弟子成长,他的生活倒也过着极为惬意的生活,直到有一天……
科幻 连载 68万字
玄学真千金又又又上热搜了!

玄学真千金又又又上热搜了!

如水吉祥
【真假千金+玄学吃瓜+妹控甜宠】 被林家找到的真千金苏瑾瑜,回家三天后就意识到父母不欢迎自己。 于是果断选择提桶跑路,苏瑾瑜刚收拾包袱好准备跑路就被赶回家的亲哥林煜给捉住了。 亲哥高大帅气,对人待物冷漠无情,是家族真正掌权人,有钱有权有颜。 但他是个究极妹控。 亲哥:鱼鱼喜欢算卦?给你开个算命工作室吧!员工工资哥哥出。 亲哥:鱼鱼喜欢直播?我把最大的直播公司买下来啦! 亲哥:鱼鱼还喜欢什么?别人
科幻 连载 19万字